SOME TAMENESS CONDITIONS INVOLVING SINGULAR DISKS(1)

BY WARREN WHITE

Introduction. A familiar sort of lemma in the study of E^3 is the following:

LEMMA. Let D and F be two disks in E^3 with $\partial D \cap F = D \cap \partial F = \emptyset$, and let U be a neighborhood of F° in E^3 . Then there is a disk D' in E^3 such that $\partial D' = \partial D$, $D' \subseteq D \cup U$, and $O(D', F) \subseteq U$ where O(D', F) is $D' \setminus F$ minus the component containing ∂D . $(D' \setminus F)$ means $D' \setminus D' \cap F$.)

Theorem 4 generalizes this lemma, allowing E to be a singular disk with its "interior" disjoint from its "boundary". It is necessary to redefine O(D', E), and this is done in §2; the new definition is motivated by Lemma 5A.

Applications of Theorem 4 to the study of 2-spheres in E^3 are given in §6. Burgess has shown (Theorem 7 in [6]) that a 2-sphere S in E^3 is tame from the interior (i.e., $S \cup$ int S is a 3-cell) if it is "locally spanned" by disks in the interior; Theorem 6 partially extends this result, letting the spanning disks be singular but imposing a condition on their boundaries. Corollary 6A notes that S is then tame from the interior if "small loops in S can be shrunk to points in small subsets of the interior." Corollary 6B answers a question raised by Bing [5, §5].

1. Notation and terminology. We use the letter d to denote the Euclidean metric for Euclidean 3-space E^3 , and let $\rho(f,g) = \sup_{x \in A} d(f(x),g(x))$ for any two maps f and g of a space A into E^3 . A map f of a subspace of E^3 into E^3 is a δ -map if $\rho(f,I) < \delta$, where I is the identity map.

An *n*-manifold N is a separable metric space such that each point $p \in N$ has an n-cell neighborhood in N. $N^{\circ} = \{p \in N : p \text{ has a neighborhood in } N \text{ homeomorphic to } E^n\}$, and $\partial N = N \setminus N^{\circ}$. N is an n-manifold-with-boundary if $\partial N \neq \emptyset$. A Euclidean neighborhood of a point $p \in N$ is an n-cell neighborhood U together with a linear structure on U. If S is a connected (n-1)-manifold in N which separates N, and V is a component of $N \setminus S$, then S is tame from V if $S \cup V$ is an n-manifold. All 2-manifolds and 3-manifolds are assumed to be triangulated [2, Theorem 6], and we use the same symbol for both the manifold and its triangulation.

Presented to the Society, January 23, 1968 under the title A 2-sphere is tame if it is 1-LC through each complementary domain; received by the editors March 5, 1968.

⁽¹⁾ This paper is essentially the author's Ph.D. thesis written under Joseph Martin at the University of Wisconsin. The author was supported by a National Science Foundation Graduate Fellowship.

Two subsets X and Y of an n-manifold N are in relative general position if, for each point $p \in N$, there is a Euclidean neighborhood U of p and triangulations T_X and T_Y of $X \cap U$ and $Y \cap U$ such that

- (i) each simplex of T_X and T_Y is a simplex in U,
- (ii) dimension $(|T_X^i| \cap |T_Y^j|) \le i+j-n$.

A map $f: X \to N$ is in general position if, for each point $p \in N$, there is a Euclidean neighborhood U of p and a triangulation T of $f^{-1}(U)$ such that

- (i) for each simplex $\sigma \in T$, $f(\sigma)$ is a simplex in U,
- (ii) for any two distinct simplices $\sigma_1 \in T^i$ and $\sigma_2 \in T^j$,

dimension
$$(f(\sigma_1^{\circ}) \cap f(\sigma_2^{\circ})) \leq i+j-n$$
.

If X and Y are two triangulated spaces, then $X \oplus Y$ denotes the disjoint union of both the spaces X and Y and their triangulations.

A Dehn disk D in E^3 is the image of a real disk Δ under a map $f: \Delta \to E^3$ such that, for some subdisk $\Delta_1 \subset \Delta^\circ$, $f(\Delta_1) \cap f(\Delta \setminus \Delta_1) = \emptyset$ and $f|_{\Delta \setminus \Delta_1}$ is piecewise linear and 1-1. The singularities of f are the points of Δ in the closure of $\{x \in \Delta : f^{-1}f(x) \neq x\}$, and the singular points of D are the images under f of these singularities. $\partial D = f(\partial \Delta)$.

If S is a 2-sphere in E^3 , then int S and ext S are, respectively, the bounded and unbounded components of $E^3 \setminus S$. Sierpinski curve and inaccessible point are as defined in [5].

2. Algebraic separation. Let N be a simply-connected n-manifold, $n \le 3$. An (n-1)-polyhedron K is an algebraic separator of N if $K \cap N^{\circ}$ can be given a triangulation in which each (n-2)-simplex is the face of an even number of (n-1)-simplices.

Suppose that K is an algebraic separator of N. Any arc $A \subseteq N$ in general position relative to K hits K at a finite number $||A \cap K||$ of points, and standard counting arguments show that:

PROPOSITION 2A. If $A \subseteq N$ and $B \subseteq N$ are polygonal arcs in general position relative to K, and A, B have the same endpoints, then $||A \cap K|| = ||B \cap K|| \pmod{2}$. In particular, if $||A \cap K||$ is odd then the endpoints of A are separated in N by K.

Suppose that D is a disk and $K \subseteq D^{\circ}$ is an algebraic separator of D. It follows from Proposition 2A that we can define a map $\phi_{D \setminus K}$ on $D \setminus K$ by setting $\phi_{D \setminus K}(x) = \|A \cap K\|$ (mod 2), where A is any arc from ∂D to x in general position relative to K. We let $O(D, K) = \{x \in D \setminus K : \phi_{D \setminus K}(x) = 1\}$.

Now suppose that Δ is a disk, M a 3-manifold, and $f: \Delta \to M$ a map such that $f|_{\Delta^{\circ}}$ is locally piecewise linear and in general position. Let $D \subset M$ be a polyhedral disk in general position relative to $f(\Delta^{\circ})$, such that $\partial D \cap f(\Delta) = D \cap f(\partial \Delta) = \emptyset$.

PROPOSITION 2B. $f^{-1}(D) = J_1 \cup \cdots \cup J_s$, where the J_i are disjoint simple closed curves. $f(J_i)$ and $f(\bigcup J_i) = D \cap f(\Delta)$ are algebraic separators of D, and $O(D, f(\bigcup J_i)) \subset \bigcup O(D, f(J_i))$.

Proof. To check that $O(D, f(\bigcup J_i)) \subset \bigcup O(D, f(J_i))$, just note that, for any polygonal arc A in general position relative to $f(\bigcup J_i)$, $||A \cap f(\bigcup J_i)|| = ||A \cap f(J_1)|| + \cdots + ||A \cap f(J_s)||$. The other statements follow from the general position of $f|_{\Delta^o}$, and of D relative to $f(\Delta^o)$.

3. Induction lemma.

LEMMA 3. Let M be a 3-manifold-with-boundary, D and Δ disks. Let $f: \Delta \to M$ be a simplicial map in general position, U an open neighborhood of $f(\Delta)$ in M.

Suppose $i: D \to M$ is a simplicial embedding such that i(D) is in general position relative to $f(\Delta)$, $i(D) \cap \partial M = i(\partial D)$, and $i(\partial D) \cap U = i(D) \cap f(\partial \Delta) = \emptyset$.

If $O(i(D), f(J)) \neq U$ for some simple closed curve $J \subseteq f^{-1}i(D)$, then there is a polyhedral disk D' in M such that:

- (3.1) $\partial D' = i(\partial D)$,
- (3.2) $D' \subset i(D) \cup U$,
- (3.3) $(i(D)\backslash U)\backslash (D'\backslash U)\neq\emptyset$.

Proof. Our proof will be analogous to those of Papakyriakopoulos [10] and Stallings [11], but where they dealt with maps of disks, we will be working with the map $i \oplus f$: $D \oplus \Delta \to M$ defined by $i \oplus f|_{D} = i$, $i \oplus f|_{\Delta} = f$. To measure the singularity of this map we use the complex $S(i \oplus f)$ defined by Stallings in his proof of [11, Lemma 3]; for completeness, we reproduce the definition here.

For any simplicial map γ of a complex X into a complex Y, a simplicial map $\gamma \times \gamma \colon X \times X \to Y \times Y$ can be constructed, where $X \times X$ and $Y \times Y$ are the cartesian products of complexes as defined in [7, p. 67]. We define $S(\gamma)$ to be the inverse image under $\gamma \times \gamma$ of the diagonal of $Y \times Y$; since this diagonal is a subcomplex of $Y \times Y$, it follows that $S(\gamma)$ is a subcomplex of $X \times X$. The useful property of $S(\gamma)$ is that, if $\Pi \colon Y \to Z$ is a simplicial map into some complex Z, then $S(\gamma) \subset S(\Pi_{\gamma})$, and $S(\gamma) = S(\Pi_{\gamma})$ if and only if Π is 1-1.

We will induct on the number $\mathcal{H}(i, f)$ of simplices in $S(i \oplus f)$; assume that $O(i(D), f(J)) \oplus U$ for some simple closed curve $J \subseteq f^{-1}i(D)$.

To simplify notation, we will identify D with i(D) from this point on in the proof of Lemma 3.

Through standard combinatorial techniques and the ideas Stallings uses in proving Lemma 3 of [11], one can show:

PROPOSITION 3A. There is a regular neighborhood N of $D \cap f(\Delta)$ in M, a closed neighborhood V of $D \cap f(\Delta)$ in D, and a piecewise linear embedding $h: D \times [-1, 1] \rightarrow N$ such that

- (i) $h(x \times 0) = x$ and $h(x \times \pm 1) \in \partial N$ for all $x \in D \setminus V$,
- (ii) $N \subseteq U \cup h((D \setminus V) \times [-1, 1])$ and $f(\Delta) \cap h((D \setminus V) \times [-1, 1]) = \emptyset$,
- (iii) the maps $i: D \to N$ and $f: \Delta \to N$ are simplicial.

The proof of the lemma splits into two parts, depending on whether or not N is simply connected.

Case I. N simply connected:

PROPOSITION 3B. The components S_1, \ldots, S_r of ∂N are spheres.

Proof. See 7.2 in [10].

PROPOSITION 3C. If p is a point of $O(D, f(J))\setminus U$, then $h(p \times -1)$ and $h(p \times 1)$ lie in different spheres S_i .

Proof. If E is the disk in Δ bounded by J, then it follows from the general position of f, and of D relative to $f(\Delta)$, that $O(D, f(J)) \cup f(E) = K$ is an algebraic separator of N. $h(p \times [-1, 1])$ is a polyhedral arc in general position relative to K which hits K once; by Proposition 2A, $h(p \times -1)$ and $h(p \times 1)$ are separated in K by $K \subseteq K$, and must therefore lie in different components of ∂K .

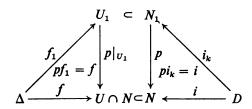
PROPOSITION 3D. If p is a point of $O(D, f(J))\setminus U$, then ∂D bounds a polyhedral disk D' in $(D\setminus p)\cup U$. (D' satisfies (3.1)–(3.3)).

Proof. Suppose ∂D lies in S_1 . By Proposition 3C, S_1 does not contain both $h(p \times -1)$ and $h(p \times 1)$. ∂D misses $h(p \times \pm 1)$, so ∂D bounds a disk D_1 in S_1 missing $h(p \times \pm 1)$. For any $x \in D \setminus V$, D_1 contains at most one of the two points $h(x \times -1)$ and $h(x \times 1)$, since D is an algebraic separator of N separating them. Using the embedding of $D \times [-1, 1]$ in N given by Proposition 3A, we can therefore draw D_1 homeomorphically into $(D \setminus p) \cup U$.

Case II. N not simply connected:

Let (N_1, p) be the universal (simply connected) covering space for N. N_1 is a 3-manifold-with-boundary, and we triangulate N_1 so that $p: N_1 \to N$ is simplicial. Let $U_1 = p^{-1}(U \cap N)$.

Let $f_1: \Delta \to N_1$ be a lifting of f, and let $i_1, i_2, \ldots, i_k, \ldots: D \to N_1$ be the distinct liftings of i.



It is easy to check that

PROPOSITION 3E. The hypotheses of Lemma 3 are satisfied by the substitution:

for	substitute	for	substitute
M	N_1	$oldsymbol{U}$	$U_{\mathtt{1}}$
Δ	Δ	D	D
f	f_1	i	any i_k

PROPOSITION 3F. For any i_k , $\mathcal{H}(i_k, f_1) < \mathcal{H}(i, f)$.

Proof. Consider the commutative diagram:

$$\pi_{1}(i_{k}(D) \cup f_{1}(\Delta)) \xrightarrow{\psi_{1}} \pi_{1}(N_{1}) = 0$$

$$\downarrow (p|_{i_{k}(D) \cup f_{1}(\Delta)})_{*} \qquad \downarrow p_{*}$$

$$\pi_{1}(D \cup f(\Delta)) \xrightarrow{\psi} \pi_{1}(N) \neq 0,$$

where ψ_1 and ψ are induced by inclusions. ψ is onto since N is a regular neighborhood of $D \cup f(\Delta)$.

Now, $S(i_k \oplus f_1) \subseteq S(p \circ (i_k \oplus f_1)) = S(i \oplus f)$. If $S(i_k \oplus f_1) = S(i \oplus f)$, then $p|i_k(D) \cup f_1(\Delta)$ is 1-1 and hence a homeomorphism, so $(p|i_k(D) \cup f_1(\Delta))_*$ is onto. But then

$$0 \neq \pi_1(N) = \psi(p|_{i_k(D) \cup f_1(\Delta)})_* \pi_1(i_k(D) \cup f_1(\Delta)) = p_* \psi_1 \pi_1(i_k(D) \cup f_1(\Delta)) = 0,$$

a contradiction. Thus, $S(i_k \oplus f_1)$ is properly contained in $S(i \oplus f)$, and $\mathcal{H}(i_k, f_1) < \mathcal{H}(i, f)$.

PROPOSITION 3G. For some $K, J \subseteq f_1^{-1}i_K(D)$ and $O(i_K(D), f_1(J)) \not\subset U_1$.

Proof. $J \subseteq f^{-1}(D) = (pf_1)^{-1}(D) = f_1^{-1}(p^{-1}(D)) = f_1^{-1}(\bigcup i_k(D)) = \bigcup f_1^{-1}i_k(D)$; since the disks $i_k(D)$ are disjoint, $J \subseteq f_1^{-1}i_k(D)$ for some K. $pi_K = i$ is a homeomorphism, so $p(O(i_K(D), f_1(J)) = O(D, f(J))$; if $O(i_K(D), f_1(J)) \subseteq U_1$, then $O(D, f(J)) \subseteq p(U_1) = U \cap N$, a contradiction to our assumption that $O(D, f(J)) \notin U$.

PROPOSITION 3H. There is a polyhedral disk D' in M satisfying (3.1)–(3.3).

Proof. Let $D_1 = i_K(D)$, where K is given by Proposition 3G. By our induction, there is a polyhedral disk D'_1 in N_1 such that:

- (i) $\partial D_1' = \partial D_1$,
- (ii) $D_1 \subset D_1 \cup U_1$,
- (iii) $(D_1\backslash U_1)\backslash (D_1'\backslash U_1)\neq\emptyset$.

Since $p|_{D_1}$ is a homeomorphism, the singularities of $p: D_1' \to M$ all lie in U_1 . $p(U_1) \cap p(\partial D_1') \subset U \cap \partial D = \emptyset$, so we can apply Dehn's lemma [9, Theorem IV.3] to get a polyhedral disk D' in M such that:

- (iv) $\partial D' = p(\partial D_1)$,
- (v) $D' \subseteq p(D_1') \cup U$.

It is easy to check that (i)–(v) imply that D' satisfies (3.1)–(3.3).

4. Using a singular disk to "cut back" a real disk.

THEOREM 4. Let U_0 be an open subset of E^3 , Δ_0 a disk, and $f_0: \Delta_0 \to E^3$ a map such that $f_0(\Delta_0) \cap U_0 = f_0(\Delta_0^\circ)$ and $f_0|_{\Delta_0^\circ}: \Delta_0^\circ \to E^3$ is locally piecewise linear and in general position.

Suppose that $D \subseteq E^3$ is a polyhedral disk such that $D \cap f_0(\partial \Delta_0) = \partial D \cap f_0(\Delta_0) = \emptyset$. Then there is a polyhedral disk D' in E^3 such that

- $(4.1) \ \partial D' = \partial D,$
- $(4.2) D' \subset D \cup U_0,$
- (4.3) D' is in general position relative to $f_0(\Delta_0^\circ)$,
- (4.4) $O(D', D' \cap f_0(\Delta_0)) \subseteq U_0$.

Proof. We may assume that \overline{U}_0 is locally polyhedral mod $f_0(\partial \Delta_0)$, and that $U_0 \cap \partial D = \emptyset$. For any disk D' satisfying (4.1) and (4.2), let $\mathscr{H}(D')$ be the number of components of $D' \setminus U_0$; $\mathscr{H}(D')$ is finite because \overline{U}_0 is polyhedral near D'.

D satisfies (4.1) and (4.2); we will induct on $\mathscr{H}(D)$. By adjusting D within U_0 , if necessary, we may assume that D is in general position relative to $f_0(\Delta_0^\circ)$; if $O(D, D \cap f_0(\Delta_0)) \subset U_0$, as is the case when $\mathscr{H}(D) = 1$, then we have nothing to prove. Suppose that $O(D, D \cap f_0(\Delta_0)) \not \subset U_0$.

Since $(D \cup U_0) \cap f_0(\partial \Delta_0) = \emptyset$, we can choose a disk $\Delta \subseteq \Delta_0^\circ$ such that $f = f_0|_{\Delta} : \Delta \to E^3$ is piecewise linear and in general position, and

$$D \cap f_0(\Delta_0) \subset f(\Delta^\circ) \setminus f(\partial \Delta)$$
.

Using standard Euclidean-space techniques, together with the fact that

$$f_0(\Delta_0^\circ) \cap f_0(\partial \Delta_0) = \varnothing$$
,

one can show:

Proposition 4A. There is a 3-manifold-with-boundary $M \subseteq E^3$ such that

- (i) $D \cup f(\Delta) \subset M$,
- (ii) $D \cap \partial M = \partial D$,
- (iii) $M \cap f_0(\partial \Delta_0) = \emptyset$.

Furthermore, M, D, and Δ may be triangulated so that the hypotheses of Lemma 3 are satisfied by M, D, Δ , f, $U = U_0 \cap M$, and the natural injection i: $D \rightarrow M$.

Since $O(D, D \cap f_0(\Delta_0)) \neq U_0$, we have also $O(D, D \cap f(\Delta)) \neq U$. By Proposition 2B, $O(D, D \cap f(J)) \neq U$ for some simple closed curve $J \subset f^{-1}(D)$. Lemma 3 then gives us a polyhedral disk D' such that

- $(4.1) \ \partial D' = \partial D,$
- (4.2) $D' \subset D \cup U \subset D \cup U_0$,
- $(3.3) (D\backslash U)\backslash (D'\backslash U)\neq\emptyset.$

To show that (3.3) implies $\mathcal{H}(D') < \mathcal{H}(D)$, we note

PROPOSITION 4B. $D' \setminus U = D' \setminus U_0$, $D \setminus U = D \setminus U_0$, and each component of $D' \setminus U$ is a component of $D \setminus U$.

Proof. $D^*\backslash U = D^*\backslash (U_0 \cap M) = (D^*\backslash U_0) \cup (D^*\backslash M) = D^*\backslash U_0$, where D^* is either D' or D. That the components of $D'\backslash U$ are components of $D\backslash U$ follows from (4.1) and (4.2) above.

REMARK. The proof of Theorem 4 shows that we can actually have D' satisfy (4.4') $O(D', D' \cap f_0(J)) \subset U_0$, for each simple closed curve $J \subset f_0^{-1}(D')$.

5. Applying Theorem 4. Throughout the remainder of the paper, Δ will represent a standard disk. Let M be a 3-manifold, S a 2-manifold in M, and $F \subseteq S$ a disk.

PROPOSITION 5A. Let \mathscr{G} be the class of all maps $g: \partial \Delta \to F^{\circ}$ which are piecewise linear into F and in general position. Then, for an arbitrary map $f: \partial \Delta \to F$, $\phi_{F \setminus f(\partial \Delta)} = \lim_{g \in \mathscr{G}: \rho(f,g) \to 0} \phi_{F \setminus g(\partial \Delta)}$ exists on $F \setminus f(\partial \Delta)$, and $\phi_{F \setminus f(\partial \Delta)}(x) = \phi_{F \setminus g(\partial \Delta)}(x)$ for any map $g \in \mathscr{G}$ which is homotopic to f in $F \setminus x$.

Proof. Both assertions follow from the easily demonstrated fact that if two maps g_1 and g_2 : $\partial \Delta \to F$ are piecewise linear into F, in general position, and homotopic in $F \setminus x$, then $\phi_{F \setminus g_1(\partial \Delta)}(x) = \phi_{F \setminus g_2(\partial \Delta)}(x)$.

If V is a component of $M \setminus S$, then a blister of F in V is a map $f: \Delta \to F \cup V$ such that $f(\Delta) \cap S = f(\partial \Delta)$. We let $O(F, f) = \{x \in F \setminus f(\partial \Delta) : \phi_{F \setminus f(\partial \Delta)}(x) = 1\}$, and denote $f(\Delta) \cup O(F, f)$ by $(f)_F$.

LEMMA 5A. Let S be a 2-sphere in E^3 , $F \subset S$ a disk. Let f be a blister of F in int S, and B a 3-cell in E^3 , such that $(f)_F \subset B^\circ$ and $f|_{\Delta^\circ} \colon \Delta^\circ \to E^3$ is locally piecewise linear and in general position.

Suppose p is a point of O(F, f), q is a point of int $S \setminus B$, and $qp \subseteq E^3$ is a polygonal arc in general position relative to $f(\Delta^{\circ})$ such that $qp \setminus p \subseteq \text{int } S$. Then $\|qp \cap f(\Delta)\|$ is odd.

Proof. Pick a point r in ext $S \setminus B$. We can use Theorem 5.37 of [12] to extend qp to a polygonal arc $qpr \subseteq E^3$ such that pr misses $S \setminus O(F, f)$ and $f(\Delta)$.

Let $\delta = d(f(\partial \Delta), (E^3 \backslash B) \cup qpr)$, and triangulate S so that F is a polyhedron in S. Using Bing's approximation theorem [1, Theorem 1], we can find a piecewise linear $\delta/2$ -homeomorphism $h: S \to E^3$ such that

(1) $qpr \cap h(S) \subseteq h(O(F, f))$

$$(=\{x\in h(F)\backslash hf(\partial\Delta):\phi_{h(F)\backslash hf(\partial\Delta)}(x)=1\}),$$

- (2) $q \in \text{int } h(S), r \in \text{ext } h(S),$
- (3) h(S) is in general position relative to $f(\Delta^{\circ}) \cup qpr$.

PROPOSITION 5B. There is a polyhedron $K \subseteq B \subseteq E^3$ such that:

- (i) K is an algebraic separator of E^3 in general position relative to qpr.
- (ii) $qpr \cap (f(\Delta) \cup h(S)) = qpr \cap K$.

Proof. Let $g: \partial \Delta \to E^3$ be a piecewise linear map in general position, such that:

- (i) $g(\partial \Delta) \subset h(F^{\circ})$,
- (ii) g and $hf|_{\partial\Delta}$ are homotopic in $h(F)\backslash qpr$,
- (iii) $\rho(g, hf|_{\partial\Delta}) < \delta/2$.

Let $\gamma: \Delta \to \Delta^{\circ}$ be a homeomorphism such that

- (iv) $\rho(f\gamma, f) < \delta$,
- (v) $f_{\gamma} : \Delta \to E^3$ is piecewise linear and in general position, and $f_{\gamma}(\Delta)$ is in general position relative to h(S).

As a result of our care with δ , we can get a piecewise linear homotopy $G: \partial \Delta \times [0, 1] \rightarrow E^3$ such that

- (vi) $G_0 = g$, $G_1 = f \gamma |_{\partial \Delta}$,
- (vii) $G(\partial \Delta \times [0, 1]) \subset B \setminus qpr$,
- (viii) $G(\partial \Delta \times (0, 1))$ is in general position relative to h(S) and $f_{\gamma}(\Delta)$.

It is simple to check that $K = O(h(F), g(\partial \Delta)) \cup G(\partial \Delta \times [0, 1]) \cup f_{\gamma}(\Delta)$ satisfies the requirements.

PROPOSITION 5C. $||qp \cap f(\Delta)||$ is odd.

Proof. K is contained in B, which does not separate q and r in E^3 , so by Proposition 2A $\|qpr \cap K\|$ is even. $\|qpr \cap K\| = \|qpr \cap (f(\Delta) \cup h(S))\| = \|qpr \cap f(\Delta)\| + \|qpr \cap h(S)\|$, by condition (3) on h. $\|qpr \cap h(S)\|$ is odd since h(S) is a manifold separating q and r in E^3 , so $\|qpr \cap f(\Delta)\|$ is also odd.

LEMMA 5B. Let S be a 2-sphere in E^3 , $F \subseteq S$ a disk. Let f_1, \ldots, f_s be blisters of F in int S, and B_1, \ldots, B_s 3-cells in E^3 such that $(f_i)_F \subseteq B_i^s$ for each i.

Suppose D is a polyhedral disk in E^3 such that $\partial D \subseteq \operatorname{int} S \setminus \bigcup B_i$, $\operatorname{int} S \cup (F \setminus \bigcup f_i(\partial \Delta)) \cup D$ retracts to $\operatorname{int} S \cup (F \setminus \bigcup f_i(\partial \Delta))$, and $D \cap S \subseteq \bigcup O(F, f_i)$.

Then there is a disk D' in E3 such that

- (5.1) $\partial D' = \partial D$,
- $(5.2) D' \subset D \cup (\bigcup B_i),$
- (5.3) $D' \subset \text{int } S$.

Proof. Suppose that we have a polyhedral disk D_j in E^3 which satisfies the following conditions:

- (1) $\partial D_i = \partial D$,
- (2) $D_i \subset D \cup (\bigcup B_i)$,
- (3) int $S \cup (F \setminus \bigcup f_i(\partial \Delta)) \cup D_j$ retracts to int $S \cup (F \setminus \bigcup f_i(\partial \Delta))$,
- $(4) D_j \cap S \subseteq \bigcup_{j < i \leq s} O(F, f_i).$

We can choose $D_0 = D$, for example, and if we had D_s we could choose $D' = D_s$. For the proof of Lemma 5B it is, therefore, sufficient to produce D_{j+1} .

We may assume that, for each i, $f_i|_{\Delta^o}$ is locally piecewise linear and in general position. The hypotheses of Theorem 4 are then satisfied by the following substitutions:

for	substitute	for	substitute
$\Delta_{ m o}$	Δ	U_{o}	$B_{j+1} \cap \text{int } S$
f_0	f_{j+1}	\boldsymbol{D}	D_{j}

There is, therefore, a polyhedral disk, which we shall call D_{j+1} , satisfying:

- $(4.1) \partial D_{j+1} = \partial D_j,$
- $(4.2) \ D_{j+1} \subset D_j \cup (B_{j+1} \cap \text{int } S),$
- (4.3) D_{i+1} is in general position relative to $f_{i+1}(\Delta^{\circ})$,
- $(4.4) \ O(D_{j+1}, D_{j+1} \cap f_{j+1}(\Delta)) \subseteq B_{j+1} \cap \text{int } S.$

From (4.1) and (4.2) it follows that D_{j+1} satisfies conditions (1)–(3); it remains to check (4).

Proposition 5D. $D_{j+1} \cap S \subset \bigcup_{j+1 < i \leq s} O(F, f_i)$.

- **Proof.** (4.2) implies that $D_{j+1} \cap S \subset \bigcup_{j < i \leq s} O(F, f_i)$, so all we need check is $O(F, f_{j+1})$. Suppose that $D_{j+1} \cap O(F, f_{j+1}) \neq \emptyset$, and use (4.3) to choose a polygonal arc A with endpoints p and q, such that
 - (i) $A \subseteq D_{i+1}$,
 - (ii) $q \in \partial D_{j+1}$, $p \in O(F, f_{j+1})$,
 - (iii) A is in general position relative to $f_{j+1}(\Delta^{\circ})$.

Using the facts that D_{j+1} satisfies (3) and int S is locally 0-connected [12, Theorem 5.35], we can get a polygonal arc A' with endpoints p' and q, such that

- (iv) $A' \setminus p' \subset \text{int } S$,
- (v) $p' \in O(F, f_{j+1}),$
- (vi) $A' \cap W = A \cap W$, for some neighborhood W of $f_{i+1}(\Delta^{\circ})$ in int S.

A' is in general position relative to $f_{j+1}(\Delta^{\circ})$ since A is, so Lemma 5A tells us that $\|A' \cap f_{j+1}(\Delta)\|$ is odd. Since $\|A' \cap f_{j+1}(\Delta)\| = \|A \cap f_{j+1}(\Delta)\|$, this means that $p \in O(D_{j+1}, D_{j+1} \cap f_{j+1}(\Delta))$. According to (4.4), p then lies in int S; but we assumed that $p \in S$, which is a contradiction. Therefore, $D_{j+1} \cap O(F, f_{j+1}) = \emptyset$.

6. **2-spheres in** E^3 . Let M be a 3-manifold, S a 2-manifold in M, and V a component of $M \setminus S$. S satisfies condition (1) toward V at a point $p \in S$ if, for any neighborhood B of p in M, and any Cantor set C in S, there is a disk $F \subset S \cap B$ and a blister f of F in V such that $p \in O(F, f) \subset (f)_F \subset B$ and $f(\partial \Delta) \cap C = \emptyset$.

THEOREM 6. Let S be a 2-sphere in E^3 which satisfies condition (1) toward its interior at every point. Then S is tame from the interior.

Proof. Let $F \subseteq S$ be a disk, U a neighborhood of F in E^3 , and $D \subseteq E^3$ a polyhedral disk with $\partial D \subseteq \text{int } S$ and $D \cap S \subseteq F^{\circ}$.

PROPOSITION 6A. To prove Theorem 6, it is sufficient to show that there is a disk D' in E^3 such that

- (i) $\partial D' = \partial D$,
- (ii) $D' \subset D \cup U$,
- (iii) $D' \subset \text{int } S$.

Proof. As Hempel has noted (in the proof of [8, Theorem 1]), this is a consequence of Bing's proof of Theorem 1 in [3].

PROPOSITION 6B. There is a Dehn disk D_0 in E^3 and a Cantor set C in S such that

- (i) $\partial D_0 = \partial D$,
- (ii) $D_0 \subset D \cup U$, with the singular points of D_0 contained in U,
- (iii) $D_0 \subset \text{int } S \cap (F^\circ \cap C)$.

Proof. We can use the Tietze extension theorem to get a Dehn disk D'_0 such that $\partial D'_0 = \partial D$ and $D'_0 \subset (D \cap \text{int } S) \cup F^\circ$, with the singular points of D'_0 contained in F. Theorem 2.1 of [5] then gives us D_0 .

PROPOSITION 6C. There are blisters f_1, \ldots, f_s of F in int S, 3-cells B_1, \ldots, B_s in $U \setminus \partial D$, and disjoint disks G_1, \ldots, G_r in S, such that $(f_i)_F \subseteq B_i^\circ$ for each i, and $D_0 \cap S \subseteq \bigcup G_j^\circ \subseteq \bigcup G_j \subseteq (\bigcup O(F, f_i)) \setminus \bigcup f_i(\partial \Delta)$.

Proof. For any point p in F° , we can choose a 3-cell neighborhood B in $U\setminus(\partial D\cup(S\setminus F))$. Let C be the Cantor set described in Proposition 6B; since S satisfies condition (1) toward int S at p, there is a disk $F_p \subset S \cap B_p \subset F$ and a blister f_p of F_p in int S such that $p \in O(F_p, f_p) = O(F, f_p) \subset (f_p)_F \subset B^{\circ}_p$ and $f_p(\partial \Delta) \cap C = \emptyset$. $D_0 \cap S$ is compact, so we can pick $p_1, \ldots, p_s \in F^{\circ}$ such that $D_0 \cap S \subset (\bigcup O(F, f_{p_i}))\setminus\bigcup f_{p_i}(\partial \Delta)$. We let $\{f_1, \ldots, f_s\} = \{f_{p_1}, \ldots, f_{p_s}\}, \{B_1, \ldots, B_s\} = \{B_{p_1}, \ldots, B_{p_s}\},$ and use the fact that $D_0 \cap S \subset C$ is 0-dimensional to choose the disks G_1, \ldots, G_r . We can use the Tietze extension theorem to show:

PROPOSITION 6D. int $S \cup (\bigcup G_i)$ is a retract of some neighborhood V of int $S \cup (\bigcup G_i^\circ)$ in E^3 .

PROPOSITION 6E. There is a polyhedral disk D_1 in E^3 such that

- (i) $\partial D_1 = \partial D$,
- (ii) $D_1 \subset D \cup U$,
- (iii) S, F, $\{f_1, \ldots, f_s\}$, $\{B_1, \ldots, B_s\}$, and $D = D_1$ satisfy the hypotheses of Lemma 5B.

Proof. The singular points of D_0 are contained in $U \cap V$, where V is as in Proposition 6D, so Dehn's Lemma gives us a polyhedral disk $D_1 \subset D_0 \cup (U \cap V)$ with $\partial D_1 = \partial D_0$. It is simple to check that D_1 meets the requirements.

If we apply Lemma 5B to D_1 , we obtain a disk D' in E^3 such that

- $(5.1) \partial D' = \partial D_1 = \partial D,$
- $(5.2) \ D' \subseteq D_1 \cup (\bigcup B_i) \subseteq D \cup U,$
- (5.3) $D' \subset \text{int } S$.

D' satisfies conditions (i)-(iii) of Proposition 6A, and the proof is therefore complete.

Let M be a 3-manifold, S a 2-manifold in M, V a component of $M \setminus S$, and B a subset of M. A loop $f: \partial \Delta \to S$ can be shrunk to a point through $B \cap V$ if there is a homotopy $H_t: \partial \Delta \to M$ such that $H_0 = f$, H_1 is constant, and $H_t(\partial \Delta) \subseteq B \cap V$ for all t > 0. S is 1-LC through V at a point $p \in S$ if, for any neighborhood B of P in M, there is a neighborhood B_1 of P in P i

COROLLARY 6A. Let S be a 2-sphere in E^3 which is 1-LC through its interior at every point. Then S is tame from the interior.

Proof. This follows from the observation:

PROPOSITION 6F. Let B be a subset of E^3 , and suppose that $i: \Delta \to S$ is an embedding such that $i(\partial \Delta)$ can be shrunk to a point through $B \cap \text{int } S$. Then there is a blister f of $i(\Delta)$ in int S such that $f(\partial \Delta) = i(\partial \Delta)$ and $f(\Delta) \subseteq B$, and we have $O(F, f) = i(\Delta^{\circ})$, for any disk $F \subseteq S$ containing $i(\Delta)$.

Let M be a 3-manifold, S a 2-manifold in M, and V a component of $M \setminus S$. A set X in S can be deformed into V if there is a homotopy $H_t: X \to M$ such that $H_0 = I$ and $H_t(X) \subseteq V$ for t > 0.

COROLLARY 6B. Let S be a 2-sphere in E^3 such that every Sierpinski curve in S can be deformed into int S. Then S is tame from the interior.

Proof. The following proposition is an adaptation of Theorem 14 in [6].

PROPOSITION 6G. Let $E_1, E_2, \ldots, E_k, \ldots$ be a decreasing sequence of disks in S whose intersection is a point $p \in \bigcap E_k^{\circ}$, and suppose that $p \cup (\bigcup \partial E_k)$ can be deformed into int S.

Then for any open set $B \subseteq E^3$ containing E_1 , there is a blister f of E_1 in int S such that $p \in O(E_1, f) \subseteq (f)_{E_1} \subseteq B$ and $f(\partial \Delta) = \partial E_K$ for some K.

Proof. Let $H_t: p \cup (\bigcup \partial E_k) \to E^3$ be a homotopy such that $H_0 = I$ and $H_t(p \cup (\bigcup \partial E_k)) \subset \text{int } S$ for t > 0. We may assume that $H_t(p \cup (\bigcup \partial E_k)) \subset B$ for each t; let B' be an open 3-cell in $B \setminus S$ containing $H_1(p)$. $H_1(\partial E_K)$ lies in B' for large enough K, and can be shrunk to a point in B'. By Proposition 6F, there is then a blister f of E_K (and hence of E_1) in int S such that $p \in E_K^\circ = O(E_1, f) \subset (f)_{E_1} \subset B$ and $f(\partial \Delta) = \partial E_K$.

PROPOSITION 6H. Let p be a point of S, C a Cantor set in S. Then p is an inaccessible point of some Sierpinski curve in S which misses C.

Proof. We just construct such a Sierpinski curve, using the fact that C is 0-dimensional.

If p is an inaccessible point of a Sierpinski curve X in S, then there is a decreasing sequence of disks $E_1, E_2, \ldots, E_k, \ldots$ in S such that $\partial E_k \subset X$ and $\bigcap E_k = \bigcap E_k^{\circ} = p$. Therefore, Propositions 6G and 6H together imply that S satisfies condition (1) toward its interior at every point.

REMARKS. (1) The hypothesis of Corollary 6B requires that any Sierpinski curve in S can be *continuously* approximated from int S. For any 2-sphere S in E^3 , any Sierpinski curve X in S, and any $\delta > 0$, it follows from Bing's side approximation theorem [4, Theorem 16] that there is a δ -homeomorphism $h: X \to \text{int } S$.

(2) Theorem 6 is stated for 2-spheres in E^3 , but its proof is based on a local criterion for tameness [8, Condition A], so Theorem 1 of [6] can be used with Lemma 5B to extend our results to two-sided 2-manifolds in 3-manifolds.

BIBLIOGRAPHY

1. R. H. Bing, Approximating surfaces with polyhedral ones, Ann. of Math. 65 (1957), 456-483.

- 2. R. H. Bing, An alternative proof that 3-manifolds can be triangulated, Ann. of Math. 69 (1959), 37-65.
- 3. —, A surface is tame if its complement is 1-ULC, Trans. Amer. Math. Soc. 101 (1961), 294-305.
 - 4. —, Approximating surfaces from the side, Ann. of Math. (2) 77 (1963), 145-192.
 - 5. ——, Pushing a 2-sphere into its complement, Michigan Math. J. 11 (1964), 33-45.
- 6. C. E. Burgess, Characterizations of tame surfaces in E³, Trans. Amer. Math. Soc. 114 (1965), 80-97.
- 7. S. Eilenberg and N. E. Steenrod, Foundations of algebraic topology, Princeton Univ. Press, Princeton, N. J., 1952.
- 8. John Hempel, A surface in S^3 is tame if it can be deformed into each complementary domain, Trans. Amer. Math. Soc. 111 (1964), 273–287.
- 9. David W. Henderson, Extensions of Dehn's lemma and the loop theorem, Trans. Amer. Math. Soc. 120 (1965), 448-469.
- 10. C. D. Papakyriakopoulos, On Dehn's lemma and the asphericity of knots, Ann. of Math. 66 (1957), 1-26.
 - 11. John Stallings, On the loop theorem, Ann. of Math. 72 (1960), 12-19.
- 12. Raymond Louis Wilder, *Topology of manifolds*, Amer. Math. Soc. Colloq. Publ. Vol. 32, Amer. Math. Soc. Providence, R. I., 1949.

ARIZONA STATE UNIVERSITY, TEMPE, ARIZONA